Mathematics of Computation Meets Geometry

Douglas N. Arnold, University of Minnesota

November 3, 2018

Structure-preservation for ODEs:

Symplectic integration

Example: ODE initial value problem

Nonlinear pendulum with damping: $\ddot{\theta} = -\frac{g}{L}\sin\theta - \alpha\dot{\theta}$

Euler's method with 20,000 steps (1,000/sec for 20 sec)

method	L_h	max error
Euler	O(h)	49°
Leapfrog	$O(h^2)$	0.24°
Runge–Kutta	$O(h^4)$	0.000048°

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and Gastineau simulated the evolution of the solar system for the next 5 Gyr!

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and Gastineau simulated the evolution of the solar system for the next 5 Gyr!

In fact, they did it 2,500 times, varying the initial position of Mercury by 0.38 mm each time. Timestep was 9 days $(2 \times 10^{11}$ time steps).

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and Gastineau simulated the evolution of the solar system for the next 5 Gyr!

In fact, they did it 2,500 times, varying the initial position of Mercury by 0.38 mm each time. Timestep was 9 days $(2 \times 10^{11}$ time steps).

1% of the simulations resulted in unstable or collisional orbits.

J. Laskar and M. Gastineau

Two 1st order methods for the Kepler problem

4 periods, 50,000 steps/period

The (undamped) pendulum, Kepler problem, and the *n*-body problem are all Hamiltonian systems: they have the form

$$\dot{p} = -\frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}, \qquad p, q: \mathbb{R} \to \mathbb{R}^d$$

This is a *geometric property:* it means that the flow map

$$(\pmb{p}_0,\pmb{q}_0)\mapsto (\pmb{p}(t),\pmb{q}(t))$$

is a *symplectic transformation* for every *t*, i.e., the differential 2-form

$$dp^1 \wedge dq^1 + \dots + dp^d \wedge dq^d$$

is invariant under pullback by the flow.

Symplectic discretization

Definition. A discretization is symplectic if the discrete flow map

$$(\boldsymbol{p}_n, \boldsymbol{q}_n) \mapsto (\boldsymbol{p}_{n+1}, \boldsymbol{q}_{n+1})$$

is a symplectic transformation (when the method is applied to Hamiltonian system).

The symplectic form must be preserved *exactly*, not to $O(h^r)$.

Euler

symplectic Euler

Sophisticated methods have been devised to find symplectic methods of high order, low cost, and with other desirable properties.

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?

For a symplectic discretization, the modified equation is itself Hamiltonian. Therefore the discrete solution exhibits Hamiltonian dynamics: no dissipation, sources, sinks, spirals, ...

The Kepler problem using RK4

• •

rk4, 500/period

RK4 with 500 steps/period

Simplest planetary simulation: the Kepler problem using RK4

RK4 with 500 steps/period, 171 orbits

The Kepler problem using Calvo4

• •

rk4, 500/period

Calvo4 with 500 steps/period

How did Laskar & Gastineau simulate the solar system for 5 Gyr?

They used SABA4, derived by McLachlan '95, Laskar & Robutel '00 using Lie theory and the Baker–Campbell–Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length = 9 days, 200 billion steps
 2nd order ??
- 2nd order

How did Laskar & Gastineau simulate the solar system for 5 Gyr?

They used SABA4, derived by McLachlan '95, Laskar & Robutel '00 using Lie theory and the Baker–Campbell–Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length = 9 days, 200 billion steps
- 2nd order [?]
- exploits the fact that the problem is an *ε*-perturbation of uncoupled Kepler problems coming from ignoring the interplanetary attraction

How did Laskar & Gastineau simulate the solar system for 5 Gyr?

They used SABA4, derived by McLachlan '95, Laskar & Robutel '00 using Lie theory and the Baker–Campbell–Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length = 9 days, 200 billion steps
 2nd order ??
- exploits the fact that the problem is an *e*-perturbation of uncoupled Kepler problems coming from ignoring the interplanetary attraction

consistency error = $O(\epsilon^2 h^2) + O(\epsilon h^8)$, $\epsilon = \frac{\text{planetary mass}}{\text{solar mass}} \approx 0.001$

De Vogelaere 1956 Verlet 1967 Ruth 1983

Feng Kang 1985

Sanz-Serna and Calvo 1994

Reich 2000, Hairer-Lubich 2001

and many many more

Structure-preservation for PDEs:

Finite Element Exterior Calculus

Some milestones

1970s: golden age of mixed finite elements; Brezzi, Raviart–Thomas, Nédélec, ... Bossavit 1988: *Whitney forms: a class of finite elements for 3D electromagnetism* Hiptmair 1999: *Canonical construction of finite elements* DNA @ ICM 2002: *Differential complexes and numerical stability* DNA-Falk-Winther:

2006: Finite element exterior calculus, homological techniques, and applications 2010: Finite element exterior calculus: from Hodge theory to numerical stability

And many more: Awanou, Boffi, Buffa, Christiansen, Cotter, Demlow, Gillette, Gúzman, Hirani, Holst, Licht, Monk, Neilan, Rapetti, Schöberl, Stern, ...

Geometry, compatibility and structure preservation in computational differential equations

> 3 July 2019 to 19 December 2019

Isaac Newton Institute Cambridge

On a domain in 3D, the L^2 *de Rham complex* is

 $0 \to L^2 \xrightarrow{\text{grad}, H^1} L^2 \otimes \mathbb{R}^3 \xrightarrow{\text{curl}, H(\text{curl})} L^2 \otimes \mathbb{R}^3 \xrightarrow{\text{div}, H(\text{div})} L^2 \to 0$

This is a special case of the L^2 de Rham complex on an arbitrary Riemannian *n*-manifold:

 $0 \to L^2 \Lambda^0 \xrightarrow{d, H \Lambda^0} L^2 \Lambda^1 \xrightarrow{d, H \Lambda^1} \cdots \xrightarrow{d, H \Lambda^{n-2}} L^2 \Lambda^{n-1} \xrightarrow{d, H \Lambda^{n-1}} L^2 \Lambda^n \to 0$

Both may be seen as special cases of the structure of a *closed Hilbert complex*, a chain complex in the setting of unbounded operators in Hilbert space:

$$0 \to W^0 \xrightarrow{d, V^0} W^1 \xrightarrow{d, V^1} \cdots \xrightarrow{d, V^{n-1}} W^n \to 0$$

where each $d: W^i \to W^{i+1}$ is a closed unbounded operator between Hilbert spaces with dense domain V^i and closed range and $d \circ d = 0$.

AFW 2010, Brüning-Lesch 1992

The Hilbert complex structure

A closed Hilbert complex carries a lot of structure.

$$0 \to W^0 \xleftarrow{d, V^0}{d^*, V_1^*} W^1 \xleftarrow{d, V^1}{d^*, V_2^*} \cdots \xleftarrow{d, V^{n-1}}{d^*, V_n^*} W^n \to 0$$

• Null space and range: $\mathfrak{Z}^k = \mathcal{N}(d^k)$ and $\mathfrak{B}^k := \mathcal{R}(d^{k-1})$ satisfy $\mathfrak{B}^k \subset \mathfrak{Z}^k$.

- Cohomology spaces: H^k := 3^k/B^k, key "geometric quantities". (For the de Rham complex their dimensions are the Betti numbers).
- Duality: Each *d* has an adjoint *d*^{*} leading to a dual Hilbert complex.
- Hodge Laplacian: $\Delta^k := dd^* + d^*d : W^k \to W^k$.
- Harmonic forms: $\mathfrak{H}^k = \mathfrak{Z}^k \cap \mathfrak{Z}^*_k$ realizes the cohomology space inside W^k . It is the null space of Δ^k .

• Hodge decomposition:
$$W^1 = \underbrace{\mathfrak{B}^k \oplus \mathfrak{H}}_{\mathfrak{Z}^{*\perp}} \underbrace{\mathfrak{B}^k \oplus \mathfrak{B}^*_k}_{\mathfrak{Z}^{*\perp}}$$

• Poincaré inequality: $||u|| \le C_P ||du||, \quad u \in V^k \cap \mathfrak{Z}^{\perp}$

Hodge Laplacian

Whenever we have a segment $W^{k-1} \xrightarrow{d,V^{k-1}} W^k \xrightarrow{d,V^k} W^{k+1}$ of a Hilbert complex, we may consider the Hodge Laplace problem $\Delta^k u = f$. It has a solution iff $f \perp \mathfrak{H}^k$. The solution is unique up to an element of \mathfrak{H}^k .

• Primal weak form: Find $u \in V^k \cap V_k^* \cap \mathfrak{H}^{\perp}$ s.t.

 $\langle du, dv
angle + \langle d^*u, d^*v
angle = \langle f, v
angle, \quad v \in V^k \cap V^*_k \cap \mathfrak{H}^\perp$

• *Mixed weak form:* Find $\sigma \in V^{k-1}$, $u \in V^k$, $p \in \mathfrak{H}$ s.t.

$$egin{aligned} &\langle \sigma, \tau
angle - \langle u, d \tau
angle &= 0, & au \in V^{k-1}, \ &\langle d \sigma, v
angle + \langle d u, d v
angle + \langle p, v
angle &= \langle f, v
angle, & au \in V^k, \ &\langle u, q
angle &= 0, & au \in \mathfrak{H}. \end{aligned}$$

The two formulations are completely equivalent and both are well-posed (Hodge decomposition and Poincaré inequality).

$$0 \to L^2 \xrightarrow{\operatorname{grad},H^1} L^2 \otimes \mathbb{R}^3 \xrightarrow{\operatorname{curl},H(\operatorname{curl})} L^2 \otimes \mathbb{R}^3 \xrightarrow{\operatorname{div},H(\operatorname{div})} L^2 \to 0$$

 $k = 0: \quad 0 \longrightarrow L^{2}(\Omega) \xrightarrow{(\operatorname{grad}, H^{1})} L^{2}(\Omega) \otimes \mathbb{R}^{3}$ Mixed=Primal: $u \in H^{1}, p \in \mathbb{R}: \langle \operatorname{grad} u, \operatorname{grad} v \rangle = \langle f - p, v \rangle, v \in H^{1}, \int u = 0.$

 $k = 3: \quad L^2 \otimes \mathbb{R}^3 \xrightarrow{\operatorname{div}, H(\operatorname{div})} L^2 \to 0$ Mixed: Find $\sigma \in H(\operatorname{div}), \ u \in L^2$ s.t. $\langle \sigma, \tau \rangle - \langle u, \operatorname{div} \tau \rangle = 0, \qquad \tau \in H(\operatorname{div}),$ $\langle \operatorname{div} \sigma, v \rangle = \langle f, v \rangle, \qquad v \in L^2.$ $k = 1: \quad L^2 \xrightarrow{\text{grad}, H^1} L^2 \otimes \mathbb{R}^3 \xrightarrow{\text{curl}, H(\text{curl})} L^2 \otimes \mathbb{R}^3$ Mixed: Find $\sigma \in H^1$, $u \in H(\text{curl})$ s.t.

$$\langle \sigma, \tau \rangle - \langle u, \operatorname{grad} \tau \rangle = 0, \qquad \tau \in H^1,$$

 $\langle \operatorname{grad} \sigma, v \rangle + \langle \operatorname{curl} u, \operatorname{curl} v \rangle = \langle f, v \rangle, \qquad v \in H(\operatorname{curl}).$

 $k = 2: \quad L^2 \otimes \mathbb{R}^3 \xrightarrow{\operatorname{curl}, H(\operatorname{curl})} L^2 \otimes \mathbb{R}^3 \xrightarrow{\operatorname{div}, H(\operatorname{div})} L^2$ Mixed: Find $\sigma \in H(\operatorname{curl}), \ u \in H(\operatorname{div})$ s.t. $\langle \sigma, \tau \rangle - \langle u, \operatorname{curl} \tau \rangle = 0, \qquad \tau \in H(\operatorname{curl}),$

 $\langle \operatorname{curl} \sigma, v \rangle + \langle \operatorname{div} u, \operatorname{div} v \rangle = \langle f, v \rangle, \quad v \in H(\operatorname{div}).$

Given the segment

$$W^{k-1} \xrightarrow{d, V^{k-1}} W^k \xrightarrow{d, V^k} W^{k+1}$$

in place of the Hodge Laplacian source problem $\Delta^k u = f$ we can consider the eigenvalue problem:

 $(dd^* + d^*d)u = \lambda u$

Find nonzero $(\sigma, u) \in V^{k-1} \times V^k$, $\lambda \in \mathbb{R}$ s.t.

 $egin{aligned} &\langle \sigma, \tau
angle - \langle u, d \tau
angle = 0, & \tau \in V^{k-1}, \ &\langle d \sigma, v
angle + \langle d u, d v
angle = \lambda \langle u, v
angle, & v \in V^k. \end{aligned}$

Or we may consider the Hodge heat equation for $u : [0, T] \rightarrow W^k$:

$$\dot{u} + (dd^* + d^*d)u = f, \quad u(0) = u_0$$

Find $(\sigma, u) : [0, T] \to V^{k-1} \times V^k$ s.t. $\langle \sigma, \tau \rangle - \langle u, d\tau \rangle = 0, \qquad \tau \in V^{k-1},$ $\langle \dot{u}, v \rangle + \langle d\sigma, v \rangle + \langle du, dv \rangle = \langle f, v \rangle, \qquad v \in V^k,$ $\ddot{U} + (dd^* + d^*d)U = 0, \quad U(0) = U_0, \quad \dot{U}(0) = U_1$

Then $\sigma := d^*U$, $\rho := dU$, $u := \dot{U}$ satisfy

$$\begin{pmatrix} \dot{\sigma} \\ \dot{u} \\ \dot{\rho} \end{pmatrix} + \begin{pmatrix} 0 & -d^* & 0 \\ d & 0 & d^* \\ 0 & -d & 0 \end{pmatrix} \begin{pmatrix} \sigma \\ u \\ \rho \end{pmatrix} = 0$$

$$\begin{split} \text{Find} \quad (\sigma, u, \rho) &: [0, T] \to V^{k-1} \times V^k \times W^{k+1} \quad \text{s.t.} \\ & \langle \dot{\sigma}, \tau \rangle \ - \ \langle u, d\tau \rangle = 0, \qquad \tau \in V^{k-1}, \\ & \langle \dot{u}, v \rangle \ + \ \langle d\sigma, v \rangle + \langle \rho, dv \rangle = 0, \qquad v \in V^k, \\ & \langle \dot{\rho}, \eta \rangle \ - \ \langle du, \eta \rangle = 0, \qquad \eta \in W^{k+1}. \end{split}$$

Both the Hodge heat equation and the Hodge wave equation can be shown to be well-posed using the Hille–Yosida–Phillips theory and the results for the Hodge Laplacian.

Example: Maxwell's equations as a Hodge wave equation

$\dot{D} = c$	url H	$\dot{B} = -\operatorname{curl} E$
div D	= 0	$\operatorname{div} B = 0$
D =	εE	$B = \mu H$
$W^0 = L^2(\Omega)$	(σ, l)	$(E,B): [0,T] \times \Omega \to \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^3$ solves
$W^1 = L^2(\Omega, \mathbb{R}^3, \epsilon dx)$		$\langle \dot{\sigma}, au angle - \langle \epsilon E, ext{grad} au angle = 0 \ orall au,$
$W^2 = L^2(\Omega, \mathbb{R}^3, \mu^{-1} dx)$	⟨εĖ	$\langle F \rangle + \langle \epsilon \operatorname{grad} \sigma, F \rangle - \langle \mu^{-1} B, \operatorname{curl} F \rangle = 0 \ \forall F,$
$W^0 \xrightarrow{\operatorname{grad}} W^1 \xrightarrow{-\operatorname{curl}} W^2$		$\langle \mu^{-1}\dot{B},C\rangle + \langle \mu^{-1}\operatorname{curl} E,C\rangle = 0 \ \forall C.$

Theorem

If σ , div ϵE , and div B vanish for t = 0, then they vanish for all t, and E, B, $D = \epsilon E$, and $H = \mu^{-1}B$ satisfy Maxwell's equations.

$$\begin{array}{cccc} 0 \rightarrow L^2 \otimes \mathbb{R}^3 & \xrightarrow{\operatorname{sym} \operatorname{grad}} & L^2 \otimes \mathbb{S}^3 & \xrightarrow{\operatorname{curl} \operatorname{T} \operatorname{curl}} & L^2 \otimes \mathbb{S}^3 & \xrightarrow{\operatorname{div}} & L^2 \otimes \mathbb{R}^3 \rightarrow 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

0 → L² ⊗ ℝ³ (sym grad)/(2 ⊗ S³) primal method for elasticity
 L² ⊗ S³ (div)/(2 ⊗ ℝ³) → 0 mixed method for elasticity
 L² ⊗ ℝ³ (sym grad)/(2 ⊗ S³) (curl T curl)/(2 ⊗ S³) elastic dislocations

The Hessian complex: $0 \to L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T} \xrightarrow{\text{div}} L^2 \otimes \mathbb{R}^3 \to 0$

■ 0 → $L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3$ primal method for plate equation ■ $L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T}$ Einstein–Bianchi eqs (GR) The Hessian complex: $0 \to L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T} \xrightarrow{\text{div}} L^2 \otimes \mathbb{R}^3 \to 0$

■ $0 \to L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3$ primal method for plate equation ■ $L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T}$ Einstein–Bianchi eqs (GR)

2D Stokes complex:

 $0 \to H^2 \xrightarrow{\text{curl}} H^1 \otimes \mathbb{R}^2 \xrightarrow{\text{div}} L^2 \to 0$

The Hessian complex: $0 \to L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T} \xrightarrow{\text{div}} L^2 \otimes \mathbb{R}^3 \to 0$

■ 0 → $L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3$ primal method for plate equation ■ $L^2 \xrightarrow{\text{grad grad}} L^2 \otimes \mathbb{S}^3 \xrightarrow{\text{curl}} L^2 \otimes \mathbb{T}$ Einstein–Bianchi eqs (GR)

2D Stokes complex:

$$0 \to H^2 \xrightarrow{\text{curl}} H^1 \otimes \mathbb{R}^2 \xrightarrow{\text{div}} L^2 \to 0$$

3D Stokes complex:

$$0 \to H^2 \xrightarrow{\text{grad}} H^1(\text{curl}) \xrightarrow{\text{curl}} H^1 \otimes \mathbb{R}^3 \xrightarrow{\text{div}} L^2 \to 0$$

Structure-preserving discretization of Hilbert complexes

For discretization we choose subspaces $V_h^{k-1} \subset V^{k-1}$, $V_h^k \subset V^k$ and use *Galerkin's method*:

Find $(\sigma_h, u_h, p_h) \in V_h^{k-1} \times V_h^k \times \mathfrak{H}^h$ s.t. $\langle \sigma_h, \tau \rangle - \langle u_h, d\tau \rangle = 0, \qquad \tau \in V_h^{k-1},$ $\langle d\sigma_h, v \rangle + \langle du_h, dv \rangle + \langle p_h, v \rangle = \langle f, v \rangle, \qquad v \in V_h^k,$ $\langle u_h, q \rangle = 0, \qquad q \in \mathfrak{H}_h.$

where $d_h = d|_{V_h}$, $\mathfrak{Z}_h = \mathcal{N}(d_h)$, $\mathfrak{B}_h = \mathcal{R}(d_h)$, $\mathfrak{H}_h = \mathfrak{Z}_h \cap \mathfrak{B}_h^{\perp}$

When is this approximation stable, consistent, and convergent?

Besides good approximation properties, the key requirements are structural:

The subcomplex property implies that $V_h^{k-1} \xrightarrow{d_h} V_h^k \xrightarrow{d_h} W^2$ is itself an H-complex. So it has its own harmonic forms, Hodge decomposition, and Poincaré inequality. The Galerkin method is precisely the Hodge Laplacian for the discrete complex.

Theorem

Given the approximation, subcomplex, and BCP assumptions:

- $\mathfrak{H} \cong \mathfrak{H}_h$ and $gap(\mathfrak{H}, \mathfrak{H}_h) \to 0$.
- The Galerkin method is consistent.
- The discrete Poincaré inequality $\|\omega\| \le c \|d\omega\|, \quad \omega \in \mathfrak{Z}_h^{k\perp},$ holds with c independent of h.
- The Galerkin method is stable.
- The Galerkin method is convergent with quasioptimal error estimates.

Example: eigenvalues of the 1-form Laplacian

Example: eigenvalues of the 1-form Laplacian

	, ,	,	. ,	
	Deg	ree 1	Deg	ree 3
# Elements	λ_1	λ_2	λ_1	λ_2
256	2.270	2.360	1.896	1.970
1,024	2.050	2.132	1.854	1.925
4,096	1.940	2.016	1.828	1.897
16,384	1.879	1.952	1.812	1.880
65,536	1.843	1.914	1.802	1.870
262,144	1.821	1.890	1.796	1.863

primal formulation with Lagrange finite elements (div u, div v) + (curl u, curl v) = $\lambda(u, v)$

		•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•		÷
	\mathbf{v}				-	-	٠	٠	٠	٠	•	•	•	•			
÷		*		-	-	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	
	4		*		+	٠	+	÷	٠	٠	•	•	٠	٠	•		
4	4	1	1			+	+	+	÷	•	•	×	×	٩	٠	٠	•
ŧ	+	1	1		-	+	+	+	+	+	-	×	x	٠	٩	٠	٠
ŧ	ŧ	t	1									¥	٩	٩	٠	٠	٠
t	t	t	t									ŧ	ŧ	٠	٠	٠	٠
t	t	t	t									ŧ	ŧ	٠	٠	٠	٠
t	t	t	t									÷	٠	٠	٠	٠	٠
t.	÷.	t	+									÷	٠	٠	٠		٠
ŧ.	t.	t	t									÷	+	٠	٠	٠	
ŧ.	t	t	t									Ŧ	÷	۶	*	٠	•
ŧ	A.	٨	1	-								1	1	1	,	,	•
٠	x	x	×	*	+	+	+	+	+	+	-	1	*	*	,	,	•
	٠	×	*	•	+	+	+	+	+	+	-	*	*	*	•	,	
•	•	•	•	•	+	+	+	+	+	+	-	-		•			
	-	-	-	٠	+	+	+	+	+	+	٠	-	-	-	-		

Example: eigenvalues of the 1-form Laplacian

	/ .	<u>/</u>	· · ·	
	Deg	ree 1	Deg	ree 3
# Elements	λ_1	λ_2	λ_1	λ_2
256	2.270	2.360	1.896	1.970
1,024	2.050	2.132	1.854	1.925
4,096	1.940	2.016	1.828	1.897
16,384	1.879	1.952	1.812	1.880
65,536	1.843	1.914	1.802	1.870
262,144	1.821	1.890	1.796	1.863

primal fo	rmulation	with L	Lagrange	finite e	lements
(div	v u, div v) +	- (curl	u, curl v)	$=\lambda(u,$	v)

mixed	tormii	lation	and	structure-preserving
maxca	ionnu	auton	unu	structure preserving

	elem	nents	1	0
	Deg	ree 1	Deg	ree 3
# Elements	λ_1	λ_2	λ_1	λ_2
256	0.000	0.638	0.000	0.619
1,024	0.000	0.625	0.000	0.618
4,096	0.000	0.620	0.000	0.617
16,384	0.000	0.618	0.000	0.617
65,536	0.000	0.618	0.000	0.617
262,144	0.000	0.617	0.000	0.617

Example: Maxwell eigenvalue problem

First 12 Maxwell eigenvalues and Galerkin approximations of them.

Exact	1	1	2	4	4	5	5	8	9	9	10	10
Diagonal mesh												
Lagrange FEEC	5.16 1.00	5.26 1.00	5.26 2.00	5.30 4.00	5.39 4.00	5.45 5.00	5.53 5.00	5.61 8.01	5.61 8.98	5.62 8.99	5.71 9.99	5.73 9.99
Crisscross m	Crisscross mesh											
Lagrange FEEC	1.00 1.00	1.00 1.00	2.00 2.00	4.00 4.00	4.00 4.00	5.00 5.00	5.00 5.00	6.00 7.99	8.01 9.00	9.01 9.00	9.01 10.00	10.02 10.00

The construction of finite element spaces satisfying the subcomplex and BCP properties varies according to the complex.

For the de Rham complex it depends on the structure of differential forms:

- wedge product
- exterior derivative
- form integration
- pullbacks
- Stokes's theorem
- the Koszul differential *κ*
- the homotopy property: $(d\kappa + \kappa d)u = (r + k)u$, $u \in \mathcal{H}_r \Lambda^k$

Finite element differential forms on simplicial meshes

A primary conclusion of FEEC is that in every dimension *n* there are *two* natural spaces of finite element differential forms associated to each simplicial mesh T_h , each form degree *k*, and each polynomial polynomial degree *r*:

The spaces *P_r*Λ^k(*T_h*) which form a de Rham subcomplex with decreasing degree:

 $0 \to \mathcal{P}_r \Lambda^0(\mathcal{T}_h) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^1(\mathcal{T}_h) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^n(\mathcal{T}_h) \to 0$

• The spaces $\mathcal{P}_r^- \Lambda^k(\mathcal{T}_h)$ which form a de Rham subcomplex with constant degree:

 $0 \to \mathcal{P}_r^- \Lambda^0(\mathcal{T}_h) \xrightarrow{d} \mathcal{P}_r^- \Lambda^1(\mathcal{T}_h) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_r^- \Lambda^n(\mathcal{T}_h) \to 0$

Pairs of spaces which satisfy the subcomplex property and BCP property can be selected from these in *four* ways:

 $\begin{aligned} & \mathcal{P}_{r} \Lambda^{k-1}(\mathcal{T}_{h}) \ \times \ \mathcal{P}_{r-1} \Lambda^{k}(\mathcal{T}_{h}) \\ & \mathcal{P}_{r}^{-} \Lambda^{k-1}(\mathcal{T}_{h}) \ \times \ \mathcal{P}_{r-1} \Lambda^{k}(\mathcal{T}_{h}) \end{aligned}$

 $\begin{aligned} \mathcal{P}_{r}\Lambda^{k-1}(\mathcal{T}_{h}) \ \times \ \mathcal{P}_{r}^{-}\Lambda^{k}(\mathcal{T}_{h}) \\ \mathcal{P}_{r}^{-}\Lambda^{k-1}(\mathcal{T}_{h}) \ \times \ \mathcal{P}_{r}^{-}\Lambda^{k}(\mathcal{T}_{h}) \end{aligned}$

$$\mathcal{P}_{r} \wedge k \xrightarrow{r=1}_{n=1} \xrightarrow{r=2}_{r=3} \xrightarrow{k=0} \xrightarrow{k=1} \xrightarrow{k=2} \xrightarrow{k=3}$$

$$r = 1 \xrightarrow{r=2}_{lagrange} \xrightarrow{r=3} \xrightarrow{r=1} \xrightarrow{k=3} \xrightarrow{k=3$$

Periodic Table of the Finite Elements

Periodic Table of the Finite Elements

New complexes from old

Elasticity with weak symmetry

The mixed formulation of elasticity with *weak symmetry* is more amenable to discretization than the standard mixed formulation. Fraeijs de Veubeke '75

$$p = \text{skw grad } u, \quad A\sigma = \text{grad } u - p$$

Find $\sigma \in L^2(\Omega) \otimes \mathbb{R}^{n \times n}, u \in L^2(\Omega) \otimes \mathbb{R}^n, p \in L^2(\Omega) \otimes \mathbb{R}^{n \times n}_{\text{skw}}$ s.t.
 $\langle A\sigma, \tau \rangle + \langle u, \operatorname{div} \tau \rangle + \langle p, \tau \rangle = 0, \qquad \tau \in L^2(\Omega) \otimes \mathbb{R}^{n \times n}$
 $-\langle \operatorname{div} \sigma, v \rangle = \langle f, v \rangle, \qquad v \in L^2(\Omega) \otimes \mathbb{R}^n$
 $-\langle \sigma, q \rangle = 0, \qquad q \in L^2(\Omega) \otimes \mathbb{R}^{n \times n}_{\text{skw}}$

This is exactly the mixed Hodge Laplacian for the complex:

$$L^2_A(\Omega)\otimes \mathbb{R}^{n\times n} \xrightarrow{(-\operatorname{div},-\operatorname{skw})} [L^2(\Omega)\otimes \mathbb{R}^n] \oplus [L^2(\Omega)\otimes \mathbb{R}^{n\times n}_{\operatorname{skw}}] \longrightarrow 0$$

$$L^2_A(\Omega)\otimes \mathbb{R}^{n\times n} \xrightarrow{(-\operatorname{div},-\operatorname{skw})} [L^2(\Omega)\otimes \mathbb{R}^n] \oplus [L^2(\Omega)\otimes \mathbb{R}^{n\times n}_{\operatorname{skw}}] \longrightarrow 0$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

To discretize we select discrete de Rham subcomplexes with commuting projections

$$ilde{V}_h^0 \stackrel{ ext{curl}}{\longrightarrow} ilde{V}_h^1 \stackrel{ ext{-div}}{\longrightarrow} ilde{V}_h^2 o 0, \qquad V_h^1 \stackrel{ ext{-div}}{\longrightarrow} V_h^2 o 0$$

to get the discrete complex

$$\tilde{V}_h^1 \otimes \mathbb{R}^n \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} (\tilde{V}_h^2 \otimes \mathbb{R}^n) \times (V_h^2 \otimes \mathbb{R}_{\operatorname{skw}}^{n \times n}) \to 0$$

We get stability if we can carry out the diagram chase on:

This requires that $\pi_h^1 S : \tilde{V}_h^0 \otimes \mathbb{R}^n \to V_h^1 \otimes \mathbb{R}_{skw}^{n \times n}$ is *surjective*.

The requirement that $\pi_h^1 S : \tilde{V}_h^0 \otimes \mathbb{R}^n \to V_h^1 \otimes \mathbb{R}_{skw}^{n \times n}$ is surjective can be checked by looking at DOFs. The simplest choice is

 $\mathcal{P}_{r+1}\Lambda^{n-2} \xrightarrow{\text{curl}} \mathcal{P}_{r}\Lambda^{n-1} \xrightarrow{-\text{div}} \mathcal{P}_{r-1}\Lambda^{n} \to 0, \quad \mathcal{P}_{r}^{-}\Lambda^{n-1} \xrightarrow{\text{div}} \mathcal{P}_{r}^{-}\Lambda^{n} \to 0$

which gives the elements of DNA-Falk-Winther '07

Other elements: Cockburn–Gopalakrishnan–Guzmán, Gopalakrishnan–Guzmán, Stenberg, ...

More complexes from complexes

where $\Gamma = \{(v, \tau) \in V^1 \times \tilde{V}^1 | dv = S\tau \}, \quad D(v, \tau) = \tilde{d}\tau.$

Find $u_h \in V_h^1, \sigma_h \in \tilde{V}_h^1, \lambda_h \in V_h^2$ s.t. $\langle \tilde{d}\sigma_h, \tilde{d}\tau \rangle + \langle \lambda_h, dv - \pi_h S\tau \rangle = \langle f, v \rangle, \quad v \in V_h^1, \ \tau \in \tilde{V}_h^1,$ $\langle du_h - \pi_h S\sigma_h, \mu \rangle = 0, \qquad \mu \in V_h^2.$

FEEC discretization of the biharmonic

$$\begin{array}{ll} 0 \longrightarrow \mathring{H}^{1}(\Omega) \xrightarrow{\operatorname{grad}} L^{2}(\Omega; \mathbb{R}^{n}) & 0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{\operatorname{grad}} \mathcal{P}_{r}^{-} \Lambda^{1} \\ 0 \longrightarrow \mathring{H}^{1}(\Omega; \mathbb{R}^{n}) \xrightarrow{f} L^{2}_{C}(\Omega; \mathbb{R}^{n \times n}) & 0 \to \mathcal{P}_{r+1} \Lambda^{0} \otimes \mathbb{R}^{n} \xrightarrow{\operatorname{grad}} L^{2}_{C}(\Omega; \mathbb{R}^{n \times n}) \end{array}$$

Find $u_h \in \mathcal{P}_r \Lambda^0$, $\sigma_h \in \mathcal{P}_{r+1} \Lambda^0$, $\lambda_h \in \mathcal{P}_r^- \Lambda^1$ s.t.

 $\langle C \operatorname{grad} \sigma_h, \operatorname{grad} \tau \rangle + \langle \lambda_h, \operatorname{grad} v - \pi_h \tau \rangle = \langle f, v \rangle, \quad v \in \mathcal{P}_r \Lambda^0, \ \tau \in \mathcal{P}_{r+1} \Lambda^0,$ $\langle \operatorname{grad} u_h - \pi_h \sigma_h, \mu \rangle = 0, \qquad \mu \in \mathcal{P}_r^- \Lambda^1.$

