Mathematics of Computation Meets Geometry

Douglas N. Arnold, University of Minnesota

November 3, 2018

Structure-preservation for ODEs:

Symplectic integration

Example: ODE initial value problem

Nonlinear pendulum with damping: $\ddot{\theta}=-\frac{g}{L} \sin \theta-\alpha \dot{\theta}$

Euler's method with 20,000 steps $(1,000 / \mathrm{sec}$ for 20 sec$)$

method	L_{h}	max error
Euler	$O(h)$	49°
Leapfrog	$O\left(h^{2}\right)$	0.24°
Runge-Kutta	$O\left(h^{4}\right)$	0.000048°

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and
Gastineau simulated the evolution of the solar system for the next 5 Gyr!

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and Gastineau simulated the evolution of the solar system for the next 5 Gyr!

In fact, they did it 2,500 times, varying the initial position of Mercury by 0.38 mm each time.

Timestep was 9 days (2×10^{11} time steps).

A challenging problem: long-term stability of the solar system

In a famous 2009 Nature paper, Laskar and
Gastineau simulated the evolution of the solar system for the next 5 Gyr!

In fact, they did it 2,500 times, varying the initial position of Mercury by 0.38 mm each time.

Timestep was 9 days
 (2×10^{11} time steps).

Two 1st order methods for the Kepler problem

4 periods, 50,000 steps/period

Euler

$$
\frac{x_{n+1}-x_{n}}{h}=v_{n}
$$

$$
\frac{v_{n+1}-v_{n}}{h}=-\frac{x_{n}}{\left|x_{n}\right|^{3}}
$$

symplectic Euler

$$
\begin{aligned}
& \frac{x_{n+1}-x_{n}}{h}=v_{n} \\
& \frac{v_{n+1}-v_{n}}{h}=-\frac{x_{n+1}}{\left|x_{n+1}\right|^{3}}
\end{aligned}
$$

Symplecticity and Hamiltonian systems

The (undamped) pendulum, Kepler problem, and the n-body problem are all Hamiltonian systems: they have the form

$$
\dot{p}=-\frac{\partial H}{\partial q}, \quad \dot{q}=\frac{\partial H}{\partial p}, \quad p, q: \mathbb{R} \rightarrow \mathbb{R}^{d}
$$

This is a geometric property: it means that the flow map

$$
\left(p_{0}, \boldsymbol{q}_{0}\right) \mapsto(\boldsymbol{p}(t), \boldsymbol{q}(t))
$$

is a symplectic transformation for every t, i.e., the differential 2 -form

$$
d p^{1} \wedge d q^{1}+\cdots+d p^{d} \wedge d q^{d}
$$

is invariant under pullback by the flow.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic \Longleftrightarrow flow is volume-preserving (2D)

In 2D, $d p \wedge d q$ is the volume form so it is invariant \Longleftrightarrow the flow is volume-preserving.

Symplectic discretization

Definition. A discretization is symplectic if the discrete flow map

$$
\left(\boldsymbol{p}_{n}, \boldsymbol{q}_{n}\right) \mapsto\left(\boldsymbol{p}_{n+1}, \boldsymbol{q}_{n+1}\right)
$$

is a symplectic transformation (when the method is applied to Hamiltonian system).
The symplectic form must be preserved exactly, not to $O\left(h^{r}\right)$.

Euler

symplectic Euler

Sophisticated methods have been devised to find symplectic methods of high order, low cost, and with other desirable properties.

Backward Error Analysis

Backward Error Analysis

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?
BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?

Backward Error Analysis

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?

Backward Error Analysis

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?

Backward Error Analysis

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?

Backward Error Analysis

Ordinary error analysis: How much do we change the true solution to obtain the discrete solution?

BEA: How much do we change the true problem to obtain the problem that the discrete solution solves exactly?
For a symplectic discretization, the modified equation is itself Hamiltonian. Therefore the discrete solution exhibits Hamiltonian dynamics: no dissipation, sources, sinks, spirals, ...

The Kepler problem using RK4

RK4 with 500 steps/period

Simplest planetary simulation: the Kepler problem using RK4

The Kepler problem using Calvo4

Calvo4 with 500 steps/period

Long-term simulation of the solar system

How did Laskar \& Gastineau simulate the solar system for 5 Gyr?
They used SABA4, derived by McLachlan '95, Laskar \& Robutel '00 using Lie theory and the Baker-Campbell-Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length $=9$ days, 200 billion steps
- 2nd order?

Long-term simulation of the solar system

How did Laskar \& Gastineau simulate the solar system for 5 Gyr?
They used SABA4, derived by McLachlan '95, Laskar \& Robutel '00 using Lie theory and the Baker-Campbell-Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length = 9 days, 200 billion steps
- 2nd order
- exploits the fact that the problem is an ϵ-perturbation of uncoupled Kepler problems coming from ignoring the interplanetary attraction

Long-term simulation of the solar system

How did Laskar \& Gastineau simulate the solar system for 5 Gyr?
They used SABA4, derived by McLachlan '95, Laskar \& Robutel '00 using Lie theory and the Baker-Campbell-Hausdorff formula.

- symplectic
- preserves time-symmetry
- step length $=9$ days, 200 billion steps
- 2nd order ?
- exploits the fact that the problem is an ϵ-perturbation of uncoupled Kepler problems coming from ignoring the interplanetary attraction
consistency error $=O\left(\epsilon^{2} h^{2}\right)+O\left(\epsilon h^{8}\right), \quad \epsilon=\frac{\text { planetary mass }}{\text { solar mass }} \approx 0.001$

Some milestones

De Vogelaere 1956
Verlet 1967
Ruth 1983
Feng Kang 1985
Sanz-Serna and Calvo 1994
Reich 2000, Hairer-Lubich 2001
and many many more

31 Springer Series in Computational Mathematics

Geometric Numerical Integration

Structure-Preserving Algorithms
for Ordinary Differential
Equations
E. Hairer
C. Lubich
G. Wanner

Second Edition

Springer

Structure-preservation for PDEs:

Finite Element Exterior Calculus

Some milestones

1970s: golden age of mixed finite elements; Brezzi, Raviart-Thomas, Nédélec, ...
Bossavit 1988: Whitney forms: a class of finite elements for 3D electromagnetism
Hiptmair 1999: Canonical construction of finite elements
DNA @ ICM 2002: Differential complexes and numerical stability
DNA-Falk-Winther:
2006: Finite element exterior calculus, homological techniques, and applications 2010: Finite element exterior calculus: from Hodge theory to numerical stability

And many more: Awanou, Boffi, Buffa, Christiansen, Cotter, Demlow, Gillette, Gúzman, Hirani, Holst, Licht, Monk, Neilan, Rapetti, Schöberl, Stern, ...

Geometry, compatibility and structure preservation in computational differential equations

3 July 2019 to
19 December 2019

Isaac Newton Institute
Cambridge

De Rham complex

On a domain in 3D, the L^{2} de Rham complex is

$$
0 \rightarrow L^{2} \xrightarrow{\text { grad, } H^{1}} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { curl, } H(\text { curl })} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { div, } H(\text { div })} L^{2} \rightarrow 0
$$

This is a special case of the L^{2} de Rham complex on an arbitrary Riemannian n-manifold:

$$
0 \rightarrow L^{2} \Lambda^{0} \xrightarrow{d, H \Lambda^{0}} L^{2} \Lambda^{1} \xrightarrow{d, H \Lambda^{1}} \cdots \xrightarrow{d, H \Lambda^{n-2}} L^{2} \Lambda^{n-1} \xrightarrow{d, H \Lambda^{n-1}} L^{2} \Lambda^{n} \rightarrow 0
$$

Both may be seen as special cases of the structure of a closed Hilbert complex, a chain complex in the setting of unbounded operators in Hilbert space:

$$
0 \rightarrow W^{0} \xrightarrow{d, V^{0}} W^{1} \xrightarrow{d, V^{1}} \cdots \xrightarrow{d, V^{n-1}} W^{n} \rightarrow 0
$$

where each $d: W^{i} \rightarrow W^{i+1}$ is a closed unbounded operator between Hilbert spaces with dense domain V^{i} and closed range and $d \circ d=0$.

AFW 2010, Brüning-Lesch 1992

The Hilbert complex structure

A closed Hilbert complex carries a lot of structure.
$0 \rightarrow W^{0} \underset{d^{*}, V_{1}^{*}}{\stackrel{d, V^{0}}{\rightleftarrows}} W^{1} \underset{d^{*}, V_{2}^{*}}{\stackrel{d, V^{1}}{\rightleftarrows}} \cdots \underset{d^{*}, V_{n}^{*}}{\stackrel{d, V^{n-1}}{\rightleftarrows}} W^{n} \rightarrow 0$

- Null space and range: $\mathfrak{Z}^{k}=\mathcal{N}\left(d^{k}\right)$ and $\mathfrak{B}^{k}:=\mathcal{R}\left(d^{k-1}\right)$ satisfy $\mathfrak{B}^{k} \subset \mathfrak{Z}^{k}$.
- Cohomology spaces: $H^{k}:=\mathfrak{Z}^{k} / \mathfrak{B}^{k}$, key "geometric quantities". (For the de Rham complex their dimensions are the Betti numbers).
- Duality: Each d has an adjoint d^{*} leading to a dual Hilbert complex.
- Hodge Laplacian: $\Delta^{k}:=d d^{*}+d^{*} d: W^{k} \rightarrow W^{k}$.
- Harmonic forms: $\mathfrak{H}^{k}=\mathfrak{Z}^{k} \cap \mathfrak{Z}_{k}^{*}$ realizes the cohomology space inside W^{k}. It is the null space of Δ^{k}.

- Hodge decomposition: $W^{1}=\underbrace{\mathfrak{B}^{k}}_{3^{* 1}} \oplus \underbrace{\mathfrak{G} \oplus \mathfrak{B}_{k}^{*}}_{\mathfrak{3}^{*}}$
- Poincaré inequality: $\|u\| \leq C_{P}\|d u\|, \quad u \in V^{k} \cap \mathfrak{Z}^{\perp}$

Hodge Laplacian

Whenever we have a segment $W^{k-1} \xrightarrow{d, V^{k-1}} W^{k} \xrightarrow{d, V^{k}} W^{k+1}$ of a Hilbert complex, we may consider the Hodge Laplace problem $\Delta^{k} u=f$. It has a solution iff $f \perp \mathfrak{H}^{k}$. The solution is unique up to an element of \mathfrak{H}^{k}.

- Primal weak form: Find $u \in V^{k} \cap V_{k}^{*} \cap \mathfrak{H}^{\perp}$ s.t.

$$
\langle d u, d v\rangle+\left\langle d^{*} u, d^{*} v\right\rangle=\langle f, v\rangle, \quad v \in V^{k} \cap V_{k}^{*} \cap \mathfrak{H}^{\perp}
$$

- Mixed weak form: Find $\sigma \in V^{k-1}, u \in V^{k}, p \in \mathfrak{H}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle & =0, & & \tau \in V^{k-1}, \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle & =\langle f, v\rangle, & & v \in V^{k}, \\
\langle u, q\rangle & =0, & & q \in \mathfrak{H} .
\end{aligned}
$$

The two formulations are completely equivalent and both are well-posed (Hodge decomposition and Poincaré inequality).

The de Rham complex in 3D

$$
\begin{aligned}
& 0 \rightarrow L^{2} \xrightarrow{\text { grad, } H^{1}} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { curl }, H(\mathrm{curl})} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { div }, H(\text { div })} L^{2} \rightarrow 0 \\
k= & 0: \quad 0 \longrightarrow L^{2}(\Omega) \xrightarrow{\left(\mathrm{grad}, H^{1}\right)} L^{2}(\Omega) \otimes \mathbb{R}^{3}
\end{aligned}
$$

Mixed=Primal: $\quad u \in H^{1}, p \in \mathbb{R}:\langle\operatorname{grad} u, \operatorname{grad} v\rangle=\langle f-p, v\rangle, v \in H^{1}, \int u=0$.
$k=3: \quad L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { div, } H(\text { div })} L^{2} \rightarrow 0$
Mixed: Find $\sigma \in H(\operatorname{div}), u \in L^{2}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, \operatorname{div} \tau\rangle & =0, & & \tau \in H(\operatorname{div}), \\
& \langle\operatorname{div} \sigma, v\rangle=\langle f, v\rangle, & & v \in L^{2} .
\end{aligned}
$$

The de Rham complex in 3D

$k=1: \quad L^{2} \xrightarrow{\text { grad, } H^{1}} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { curl, } H(\text { curl })} L^{2} \otimes \mathbb{R}^{3}$
Mixed: Find $\sigma \in H^{1}, u \in H$ (curl) s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, \operatorname{grad} \tau\rangle & =0, & & \tau \in H^{1}, \\
\langle\operatorname{grad} \sigma, v\rangle+\langle\operatorname{curl} u, \operatorname{curl} v\rangle & =\langle f, v\rangle, & & v \in H(\operatorname{curl}) .
\end{aligned}
$$

$k=2: \quad L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { curl, } H(\text { curl })} L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { div, } H(\text { div) }} L^{2}$
Mixed: Find $\sigma \in H$ (curl), $u \in H($ div $)$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, \operatorname{curl} \tau\rangle & =0, & & \tau \in H(\operatorname{curl}), \\
\langle\operatorname{curl} \sigma, v\rangle+\langle\operatorname{div} u, \operatorname{div} v\rangle & =\langle f, v\rangle, & & v \in H(\operatorname{div}) .
\end{aligned}
$$

The Hodge eigenvalue problem

Given the segment

$$
W^{k-1} \xrightarrow{d, V^{k-1}} W^{k} \xrightarrow{d, V^{k}} W^{k+1}
$$

in place of the Hodge Laplacian source problem $\Delta^{k} u=f$ we can consider the eigenvalue problem:

$$
\left(d d^{*}+d^{*} d\right) u=\lambda u
$$

Find nonzero $(\sigma, u) \in V^{k-1} \times V^{k}, \lambda \in \mathbb{R}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle & =0, & & \tau \in V^{k-1}, \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle & =\lambda\langle u, v\rangle, & & v \in V^{k} .
\end{aligned}
$$

The Hodge heat equation

Or we may consider the Hodge heat equation for $u:[0, T] \rightarrow W^{k}$:

$$
\dot{u}+\left(d d^{*}+d^{*} d\right) u=f, \quad u(0)=u_{0}
$$

Find

$$
(\sigma, u):[0, T] \rightarrow V^{k-1} \times V^{k} \quad \text { s.t. }
$$

$$
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle=0, \quad \tau \in V^{k-1}
$$

$$
\langle\dot{u}, v\rangle+\langle d \sigma, v\rangle+\langle d u, d v\rangle=\langle f, v\rangle, \quad v \in V^{k}
$$

The Hodge wave equation

$$
\ddot{U}+\left(d d^{*}+d^{*} d\right) U=0, \quad U(0)=U_{0}, \quad \dot{U}(0)=U_{1}
$$

Then $\sigma:=d^{*} U, \rho:=d U, u:=\dot{U}$ satisfy

$$
\left(\begin{array}{c}
\dot{\sigma} \\
\dot{u} \\
\dot{\rho}
\end{array}\right)+\left(\begin{array}{ccc}
0 & -d^{*} & 0 \\
d & 0 & d^{*} \\
0 & -d & 0
\end{array}\right)\left(\begin{array}{l}
\sigma \\
u \\
\rho
\end{array}\right)=0
$$

Find $\quad(\sigma, u, \rho):[0, T] \rightarrow V^{k-1} \times V^{k} \times W^{k+1} \quad$ s.t.

$$
\begin{array}{ll}
\langle\dot{\sigma}, \tau\rangle-\langle u, d \tau\rangle=0, & \tau \in V^{k-1} \\
\langle\dot{u}, v\rangle+\langle d \sigma, v\rangle+\langle\rho, d v\rangle=0, & v \in V^{k} \\
\langle\dot{\rho}, \eta\rangle-\langle d u, \eta\rangle=0, & \eta \in W^{k+1} .
\end{array}
$$

Both the Hodge heat equation and the Hodge wave equation can be shown to be well-posed using the Hille-Yosida-Phillips theory and the results for the Hodge Laplacian.

Example: Maxwell's equations as a Hodge wave equation

$$
\begin{array}{cc}
\dot{D}=\operatorname{curl} H & \dot{B}=-\operatorname{curl} E \\
\operatorname{div} D=0 & \operatorname{div} B=0 \\
D=\epsilon E & B=\mu H
\end{array}
$$

$$
\begin{aligned}
& W^{0}=L^{2}(\Omega) \\
& W^{1}=L^{2}\left(\Omega, \mathbb{R}^{3}, \epsilon d x\right) \\
& W^{2}=L^{2}\left(\Omega, \mathbb{R}^{3}, \mu^{-1} d x\right) \\
& W^{0} \xrightarrow{\text { grad }} W^{1} \xrightarrow{-\operatorname{curl}} W^{2}
\end{aligned}
$$

$$
\begin{gathered}
(\sigma, E, B):[0, T] \times \Omega \rightarrow \mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \text { solves } \\
\langle\dot{\sigma}, \tau\rangle-\langle\epsilon E, \operatorname{grad} \tau\rangle=0 \forall \tau, \\
\langle\epsilon \dot{E}, F\rangle+\langle\epsilon \operatorname{grad} \sigma, F\rangle-\left\langle\mu^{-1} B, \operatorname{curl} F\right\rangle=0 \forall F, \\
\left\langle\mu^{-1} \dot{B}, C\right\rangle+\left\langle\mu^{-1} \operatorname{curl} E, C\right\rangle=0 \forall C .
\end{gathered}
$$

THEOREM

If $\sigma, \operatorname{div} \epsilon E$, and $\operatorname{div} B$ vanish for $t=0$, then they vanish for all t, and E, B, $D=\epsilon E$, and $H=\mu^{-1} B$ satisfy Maxwell's equations.

Another complex: the elasticity complex

$$
\begin{aligned}
& \underset{\text { displacement }}{0 \rightarrow L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { sym grad }} L^{2} \otimes S^{3} \xrightarrow[\text { strain }]{\text { curl Tcurl }} L^{2} \otimes S^{3} \xrightarrow{\text { div }} \xrightarrow[\text { stress }]{ } L^{2} \otimes \mathbb{R}^{3} \rightarrow 0} \text { load } \\
& \text { - } 0 \rightarrow L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { symgrad }} L^{2} \otimes S^{3} \text { primal method for elasticity } \\
& \text { - } L^{2} \otimes S^{3} \xrightarrow{\text { div }} L^{2} \otimes \mathbb{R}^{3} \rightarrow 0 \quad \text { mixed method for elasticity } \\
& \text { - } L^{2} \otimes \mathbb{R}^{3} \xrightarrow{\text { sym grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl T curl }} L^{2} \otimes S^{3} \quad \text { elastic dislocations }
\end{aligned}
$$

Still other complexes

The Hessian complex:

$$
0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{\mathbb { T }} \xrightarrow{\text { div }} L^{2} \otimes \mathbb{R}^{3} \rightarrow 0
$$

- $0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \quad$ primal method for plate equation
- $L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{T}$ Einstein-Bianchi eqs (GR)

Still other complexes

The Hessian complex:

$$
0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes \mathbb{S}^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{\mathbb { T }} \xrightarrow{\text { div }} L^{2} \otimes \mathbb{R}^{3} \rightarrow 0
$$

- $0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \quad$ primal method for plate equation
- $L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{T}$ Einstein-Bianchi eqs (GR)

2D Stokes complex:

$$
0 \rightarrow H^{2} \xrightarrow{\text { curl }} H^{1} \otimes \mathbb{R}^{2} \xrightarrow{\text { div }} L^{2} \rightarrow 0
$$

Still other complexes

The Hessian complex:

$$
0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{T} \xrightarrow{\text { div }} L^{2} \otimes \mathbb{R}^{3} \rightarrow 0
$$

- $0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \quad$ primal method for plate equation
- $L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S^{3} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{T}$ Einstein-Bianchi eqs (GR)

2D Stokes complex:

$$
0 \rightarrow \mathrm{H}^{2} \xrightarrow{\text { curl }} H^{1} \otimes \mathbb{R}^{2} \xrightarrow{\text { div }} \mathrm{L}^{2} \rightarrow 0
$$

3D Stokes complex:

$$
0 \rightarrow H^{2} \xrightarrow{\text { grad }} H^{1}(\text { curl }) \xrightarrow{\text { curl }} H^{1} \otimes \mathbb{R}^{3} \xrightarrow{\text { div }} L^{2} \rightarrow 0
$$

Structure-preserving discretization of Hilbert complexes

Structure-preserving discretization

For discretization we choose subspaces $V_{h}^{k-1} \subset V^{k-1}, V_{h}^{k} \subset V^{k}$ and use Galerkin's method:

Find $\left(\sigma_{h}, u_{h}, p_{h}\right) \in V_{h}^{k-1} \times V_{h}^{k} \times \mathfrak{H}^{h}$ s.t.

$$
\begin{aligned}
\left\langle\sigma_{h}, \tau\right\rangle-\left\langle u_{h}, d \tau\right\rangle & =0, & & \tau \in V_{h}^{k-1}, \\
\left\langle d \sigma_{h}, v\right\rangle+\left\langle d u_{h}, d v\right\rangle+\left\langle p_{h}, v\right\rangle & =\langle f, v\rangle, & & v \in V_{h^{\prime}}^{k} \\
\left\langle u_{h}, q\right\rangle & =0, & & q \in \mathfrak{H}_{h} .
\end{aligned}
$$

where $d_{h}=\left.d\right|_{V_{h}}, \mathfrak{Z}_{h}=\mathcal{N}\left(d_{h}\right), \mathfrak{B}_{h}=\mathcal{R}\left(d_{h}\right), \mathfrak{H}_{h}=\mathfrak{Z}_{h} \cap \mathfrak{B} \frac{1}{h}$
When is this approximation stable, consistent, and convergent?

Assumptions on the discretization

Besides good approximation properties, the key requirements are structural:

Subcomplex assumption: $\quad d V_{h}^{k} \subset V_{h}^{k+1}$
Bounded Cochain Projection assumption: $\exists \pi_{h}^{k}: V^{k} \rightarrow V_{h}^{k}$

$$
\begin{array}{ccc}
V^{k} \xrightarrow{d^{k}} & V^{k+1} \\
\downarrow_{h}^{k} & & \|_{h}^{k+1} \\
V_{h}^{k} \xrightarrow{d^{k}} & V_{h}^{k+1}
\end{array}
$$

- π_{h}^{k} is bounded, uniformly in h
- $\pi_{h}^{k+1} d^{k}=d^{k} \pi_{h}^{k}$
- π_{h}^{k} preserves V_{h}^{k}

The subcomplex property implies that $V_{h}^{k-1} \xrightarrow{d_{h}} V_{h}^{k} \xrightarrow{d_{h}} W^{2}$ is itself an H-complex. So it has its own harmonic forms, Hodge decomposition, and Poincaré inequality. The Galerkin method is precisely the Hodge Laplacian for the discrete complex.

Consequences of the assumptions

THEOREM

Given the approximation, subcomplex, and BCP assumptions:

- $\mathfrak{H} \cong \mathfrak{H}_{h}$ and $\operatorname{gap}\left(\mathfrak{H}, \mathfrak{H}_{h}\right) \rightarrow 0$.
- The Galerkin method is consistent.
- The discrete Poincaré inequality $\|\omega\| \leq c\|d \omega\|, \quad \omega \in \mathcal{Z}_{h}^{k \perp}$, holds with c independent of h.
- The Galerkin method is stable.
- The Galerkin method is convergent with quasioptimal error estimates.

Example: eigenvalues of the 1-form Laplacian

Example: eigenvalues of the 1-form Laplacian

Example: eigenvalues of the 1-form Laplacian

Example: Maxwell eigenvalue problem

First 12 Maxwell eigenvalues and Galerkin approximations of them.

Exact	1	1	2	4	4	5	5	8	9	9	10	10
Diagonal mesh												
Lagrange	5.16	5.26	5.26	5.30	5.39	5.45	5.53	5.61	5.61	5.62	5.71	5.73
FEEC	1.00	1.00	2.00	4.00	4.00	5.00	5.00	8.01	8.98	8.99	9.99	9.99
Crisscross mesh												
Lagrange	1.00	1.00	2.00	4.00	4.00	5.00	5.00	6.00	8.01	9.01	9.01	10.02
FEEC	1.00	1.00	2.00	4.00	4.00	5.00	5.00	7.99	9.00	9.00	10.00	10.00

Structure-preserving finite elements

The construction of finite element spaces satisfying the subcomplex and BCP properties varies according to the complex.
For the de Rham complex it depends on the structure of differential forms:

- wedge product
- exterior derivative
- form integration
- pullbacks
- Stokes's theorem
- the Koszul differential κ
- the homotopy property: $(d \kappa+\kappa d) u=(r+k) u, \quad u \in \mathcal{H}_{r} \Lambda^{k}$

Finite element differential forms on simplicial meshes

A primary conclusion of FEEC is that in every dimension n there are two natural spaces of finite element differential forms associated to each simplicial mesh \mathcal{T}_{h}, each form degree k, and each polynomial polynomial degree r :

- The spaces $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ which form a de Rham subcomplex with decreasing degree:

$$
0 \rightarrow \mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}\left(\mathcal{T}_{h}\right) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}\left(\mathcal{T}_{h}\right) \rightarrow 0
$$

- The spaces $\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ which form a de Rham subcomplex with constant degree:

$$
0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0}\left(\mathcal{T}_{h}\right) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}\left(\mathcal{T}_{h}\right) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}\left(\mathcal{T}_{h}\right) \rightarrow 0
$$

Pairs of spaces which satisfy the subcomplex property and BCP property can be selected from these in four ways:

$$
\begin{array}{rr}
\mathcal{P}_{r} \Lambda^{k-1}\left(\mathcal{T}_{h}\right) & \times \mathcal{P}_{r-1} \Lambda^{k}\left(\mathcal{T}_{h}\right)
\end{array} \quad \mathcal{P}_{r} \Lambda^{k-1}\left(\mathcal{T}_{h}\right) \times \mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)
$$

$$
\begin{array}{rlllll}
\mathcal{P}_{r}-\Lambda^{k} & & k=0 & k=1 & k=2 & k=3 \\
n=1 & r=2 & \bullet & \longrightarrow & \\
& r=3 & \bullet & \longrightarrow & &
\end{array}
$$

$$
r=1
$$

$$
n=2 \quad r=2
$$

$$
r=3
$$

$$
r=1
$$

$$
n=3 \quad r=2
$$

$$
r=3
$$

Periodic Table of the Finite Elements

Periodic Table of the Finite Elements

New complexes from old

Elasticity with weak symmetry

The mixed formulation of elasticity with weak symmetry is more amenable to discretization than the standard mixed formulation.

Fraeijs de Veubeke '75
$p=\operatorname{skw} \operatorname{grad} u, \quad A \sigma=\operatorname{grad} u-p$
Find $\quad \sigma \in L^{2}(\Omega) \otimes \mathbb{R}^{n \times n}, u \in L^{2}(\Omega) \otimes \mathbb{R}^{n}, p \in L^{2}(\Omega) \otimes \mathbb{R}_{\text {skw }}^{n \times n} \quad$ s.t.

$$
\begin{aligned}
\langle A \sigma, \tau\rangle+\langle u, \operatorname{div} \tau\rangle+\langle p, \tau\rangle & =0, & & \tau \in L^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \\
-\langle\operatorname{div} \sigma, v\rangle & =\langle f, v\rangle, & & v \in L^{2}(\Omega) \otimes \mathbb{R}^{n} \\
-\langle\sigma, q\rangle & =0, & & q \in L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}
\end{aligned}
$$

This is exactly the mixed Hodge Laplacian for the complex:
$L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw)}}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\text {skw }}^{n \times n}\right] \longrightarrow 0$

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw })}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw })}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw })}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S_{\tau}=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw })}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div,-skw })}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div, -skw)}}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}(\Omega) \otimes \mathbb{R}^{n \times n} \xrightarrow{(- \text { div, -skw)}}\left[L^{2}(\Omega) \otimes \mathbb{R}^{n}\right] \oplus\left[L^{2}(\Omega) \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right] \longrightarrow 0
$$

Well-posedness depends on the exactness of the complex. This can be shown by relating the complex to two de Rham complexes:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Discretization

To discretize we select discrete de Rham subcomplexes with commuting projections

$$
\tilde{V}_{h}^{0} \xrightarrow{\text { curl }} \tilde{V}_{h}^{1} \xrightarrow{- \text { div }} \tilde{V}_{h}^{2} \rightarrow 0, \quad V_{h}^{1} \xrightarrow{- \text { div }} V_{h}^{2} \rightarrow 0
$$

to get the discrete complex

$$
\tilde{V}_{h}^{1} \otimes \mathbb{R}^{n} \xrightarrow{(- \text { div, -skw })}\left(\tilde{V}_{h}^{2} \otimes \mathbb{R}^{n}\right) \times\left(V_{h}^{2} \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \rightarrow 0
$$

We get stability if we can carry out the diagram chase on:

This requires that $\quad \pi_{h}^{1} S: \tilde{V}_{h}^{0} \otimes \mathbb{R}^{n} \rightarrow V_{h}^{1} \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n} \quad$ is surjective.

Stable elements

The requirement that $\pi_{h}^{1} S: \tilde{V}_{h}^{0} \otimes \mathbb{R}^{n} \rightarrow V_{h}^{1} \otimes \mathbb{R}_{\text {skw }}^{n \times n} \quad$ is surjective can be checked by looking at DOFs.
The simplest choice is

$$
\mathcal{P}_{r+1} \Lambda^{n-2} \xrightarrow{\text { curl }} \mathcal{P}_{r} \Lambda^{n-1} \xrightarrow{-\operatorname{div}} \mathcal{P}_{r-1} \Lambda^{n} \rightarrow 0, \quad \mathcal{P}_{r}^{-} \Lambda^{n-1} \xrightarrow{\text { div }} \mathcal{P}_{r}^{-} \Lambda^{n} \rightarrow 0
$$

which gives the elements of DNA-Falk-Winther '07

u

p
Other elements:
Cockburn-Gopalakrishnan-Guzmán, Gopalakrishnan-Guzmán, Stenberg, ...

More complexes from complexes

where $\quad \Gamma=\left\{(v, \tau) \in V^{1} \times \tilde{V}^{1} \mid d v=S \tau\right\}, \quad D(v, \tau)=\tilde{d} \tau$.

$$
0 \longrightarrow \tilde{V}_{h}^{1} \xrightarrow{\tilde{d}} \tilde{W}^{2}
$$

$$
0 \longrightarrow \Gamma_{h} \xrightarrow{D} \tilde{W}^{2}
$$

where $\Gamma_{h}=\left\{(v, \tau) \in V_{h}^{1} \times \tilde{V}_{h}^{1} \mid d v=\pi_{h}^{2} S \tau\right\}$.

Find $u_{h} \in V_{h}^{1}, \sigma_{h} \in \tilde{V}_{h}^{1}, \lambda_{h} \in V_{h}^{2}$ s.t.

$$
\begin{aligned}
\left\langle\tilde{d} \sigma_{h}, \tilde{d} \tau\right\rangle+\left\langle\lambda_{h}, d v-\pi_{h} S \tau\right\rangle & =\langle f, v\rangle, & & v \in V_{h}^{1}, \tau \in \tilde{V}_{h}^{1} \\
\left\langle d u_{h}-\pi_{h} S \sigma_{h}, \mu\right\rangle & =0, & & \mu \in V_{h}^{2} .
\end{aligned}
$$

FEEC discretization of the biharmonic

$$
\begin{aligned}
& 0 \longrightarrow \stackrel{\circ}{H}^{1}(\Omega) \xrightarrow{\text { grad }} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \\
& 0 \longrightarrow \stackrel{\circ}{H}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \xrightarrow{\text { grad }} L_{C}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{\pi_{h}} \mathcal{P}_{r}^{-} \Lambda^{1} \\
& 0 \rightarrow \mathcal{P}_{r+1} \Lambda^{0} \otimes \mathbb{R}^{n} \xrightarrow{\text { grad }} L_{C}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right)
\end{aligned}
$$

Find $\quad u_{h} \in \mathcal{P}_{r} \Lambda^{0}, \sigma_{h} \in \mathcal{P}_{r+1} \Lambda^{0}, \lambda_{h} \in \mathcal{P}_{r}^{-} \Lambda^{1} \quad$ s.t.
$\left\langle C \operatorname{grad} \sigma_{h}, \operatorname{grad} \tau\right\rangle+\left\langle\lambda_{h}, \operatorname{grad} v-\pi_{h} \tau\right\rangle=\langle f, v\rangle, \quad v \in \mathcal{P}_{r} \Lambda^{0}, \tau \in \mathcal{P}_{r+1} \Lambda^{0}$,

$$
\left\langle\operatorname{grad} u_{h}-\pi_{h} \sigma_{h}, \mu\right\rangle=0, \quad \mu \in \mathcal{P}_{r}^{-} \Lambda^{1}
$$

u

σ

λ

